skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Laurent, Pierre"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A 3-D numerical model was used for multi-decadal eddy-resolving simulations of the Amundsen Sea embayment (Antarctica). A control simulation covered the historical period 2006-2023 (~2 decades) under realistic atmospheric and oceanic conditions. Three additional simulations representing the mid-21st century were conducted based on future projections from CMIP6 models ACCESS-CM2, MPI-ESM1-2-HR, MRI-ESM2-0 (scenario SSP2-4.5). These three CMIP6 models were selected based on their realism during the historical period as well as their diversity in terms of resolution and level of warming. The four simulations provided information about the regional hydrography, oceanic circulation, sea ice cover, ice shelf basal melt rates, and biogeochemical conditions (nitrogen and iron). The four simulations were then condensed into daily climatologies in order to summarize changes in the seasonal cycle of the Amundsen embayment in response to the projected warming. The present archive includes the four daily climatologies as well as all the information required to repeat the numerical experiments (code and input files). 
    more » « less
  2. Estuarine environments are characterized by strong spatial gradients and high temporal variability that are difficult to fully capture with discrete field measurements. This is particularly the case in the Chesapeake Bay, the largest estuary in the continental United States. This archive provides a climatological atlas of physical and biogeochemical conditions for the Chesapeake Bay based on numerical model results of 1985-2023. The atlas includes surface and bottom conditions on a fine longitude/latitude grid with a monthly frequency. The environmental variables are stored in a NetCDF file with abundant metadata that can be used in software such as QGIS, Python, R, Matlab or GNU Octave. A 50+ page documentation in PDF format provides additional information on the environmental variables, the numerical model used to generate the climatology, and an evaluation of the model skill over the period of the atlas. The documentation also includes ready-made visualizations for each environmental variable. 
    more » « less
  3. Abstract Variations in estuarine carbonate chemistry can have critical impacts on marine calcifying organisms, yet the drivers of this variability are difficult to quantify from observations alone, due to the strong spatiotemporal variability of these systems. Terrestrial runoff and wetland processes vary year to year based on local precipitation, and estuarine processes are often strongly modulated by tides. In this study, a 3D-coupled hydrodynamic-biogeochemical model is used to quantify the controls on the carbonate system of a coastal plain estuary, specifically the York River estuary. Experiments were conducted both with and without tidal wetlands. Results show that on average, wetlands account for 20–30% of total alkalinity (TA) and dissolved inorganic carbon (DIC) fluxes into the estuary, and double-estuarine CO2outgassing. Strong quasi-monthly variability is driven by the tides and causes fluctuations between net heterotrophy and net autotrophy. On longer time scales, model results show that in wetter years, lower light availability decreases primary production relative to biological respiration (i.e., greater net heterotrophy) resulting in substantial increases in CO2outgassing. Additionally, in wetter years, advective exports of DIC and TA to the Chesapeake Bay increase by a factor of three to four, resulting in lower concentrations of DIC and TA within the estuary. Quantifying the impacts of these complex drivers is not only essential for a better understanding of coastal carbon and alkalinity cycling, but also leads to an improved assessment of the health and functioning of coastal ecosystems both in the present day and under future climate change. 
    more » « less
  4. Satellite images from Antarctica reveal important changes in the coastal icescape (fast-ice, icebergs and ice shelves) but these yearly changes and their impacts on the coastal circulation and ice shelf basal melt rates are not represented in the Earth System Models used to project future sea level rise. The impacts of these yearly icescape changes are thus investigated using a high-resolution regional ocean-ice shelves-sea ice coupled model of the Amundsen Sea (Antarctica). A set of nine semi-idealized experiments were designed to highlight the impacts of (a) the collapse of the Thwaites Glacier Tongue, (b) the disappearance of the Bear Ridge Iceberg Chain and tabular iceberg B22, and (c) presence/absence of a fast-ice cover between Thwaites and Pine Island ice shelves, in both cold and warm background hydrological conditions. The dataset features the results of the nine experiments and reveals changes in sea ice concentrations, coastal oceanic circulation and oceanic heat supply to the ice shelf cavities, ice shelf basal melt rates, hydrological conditions, and fluxes of heat/freshwater at the sea surface. These model results are archived in self-documented NetCDF files with the appropriate metadata for each variable. The dataset includes a 'readme file' providing an overview of the archive as well as additional information regarding the model results. 
    more » « less
  5. A three-dimensional numerical model of the Amundsen Sea (Antarctica) was used to simulate the period Jan.2006-Mar.2022 under consistent atmospheric/oceanic forcings, bathymetry/ice shelf topography, and model equations/parameters. The model is an implementation of the Regional Ocean Modeling System (ROMS, https://www.myroms.org/) with extensions for sea ice (Budgell 2005) and ice shelves (Dinniman et al. 2011). It simulates the ocean hydrography and circulation, sea ice thermodynamics and dynamics, and the basal melt of the ice shelves, with a uniform horizontal mesh of 1.5km and 20 topography-following vertical levels. Forcings include the ERA5 reanalysis (3-hourly), 10 tidal constituents from CATS 2008, and ocean/sea ice conditions at the edges of the model domain taken from the 5km-resolution circumpolar model of Dinniman et al. 2020 and from daily SSM/I satellite images. The model outputs are divided into nine directories each containing two years worth of model results (run661-669) in the NetCDF format. Each directory contains: daily-averaged model fields (roms_avg_xxxx.nc), instantaneous snapshots every 3 hours for select fields (roms_qck_xxxx.nc), and instantaneous snapshots every 30 days (roms_his_xxxx.nc). All the metadata information necessary for the interpretation of the model outputs (dimensions, units, etc) is included inside the NetCDF files. The NetCDF files follow the CF conventions and can be opened with various software that are open source and freely available over the Internet. In addition to the model outputs, this archive includes the computer code as well as the input files necessary for reproducing the model outputs of this archive. 
    more » « less
  6. Abstract Upward advection or mixing of iron‐rich deep waters due to circulation changes driven by the rate of basal ice shelf melt was shown to be a primary control on chlorophyllaproduction in coastal polynyas over the Antarctic continental shelf. Here, the effects of atmospheric changes projected in 2100 on this relationship were examined with a 5‐km resolution ocean/sea ice/ice shelf model of the Southern Ocean with different simulated dissolved iron sources and idealized biological uptake. The atmospheric changes are added as idealized increments to the forcing. Inclusion of a poleward shift and strengthening of the winds, increased precipitation, and warmer atmospheric temperatures resulted in doubling of the heat advected onto the continental shelf and an 83% increase in the total Antarctic ice shelf basal melt. The total dissolved iron supply to the surface waters over the continental shelf increased by 62%, while the surface iron supply due just to basal melt driven overturning increased by 48%. However, even though the ice shelf driven contribution becomes less important to the total iron supply on average (29% of total), the ice shelf involvement becomes relatively even more important in some locations, such as the Amundsen and Bellingshausen Seas. The modified atmospheric conditions also produced a reduction in summer sea ice extent and a shoaling of the summer mixed layers. These simulated responses to projected changes suggest relief of light and nutrient limitation for phytoplankton blooms over the Antarctic continental shelf and perhaps an increase in annual production in years to come. 
    more » « less
  7. Abstract Previous studies showed that satellite‐derived estimates of chlorophyllain coastal polynyas over the Antarctic continental shelf are correlated with the basal melt rate of adjacent ice shelves. A 5‐km resolution ocean/sea ice/ice shelf model of the Southern Ocean is used to examine mechanisms that supply the limiting micronutrient iron to Antarctic continental shelf surface waters. Four sources of dissolved iron are simulated with independent tracers, assumptions about the source iron concentration for each tracer, and an idealized summer biological uptake. Iron from ice shelf melt provides about 6% of the total dissolved iron in surface waters. The contribution from deep sources of iron on the shelf (sediments and Circumpolar Deep Water) is much larger at 71%. The relative contribution of dissolved iron supply from basal melt driven overturning circulation within ice shelf cavities is heterogeneous around Antarctica, but at some locations, such as the Amundsen Sea, it is the primary mechanism for transporting deep dissolved iron to the surface. Correlations between satellite chlorophyllain coastal polynyas around Antarctica and simulated dissolved iron confirm the previous suggestion that productivity of the polynyas is linked to the basal melt of adjacent ice shelves. This correlation is the result of upward advection or mixing of iron‐rich deep waters due to circulation changes driven by ice shelf melt, rather than a direct influence of iron released from melting ice shelves. This dependence highlights the potential vulnerability of coastal Antarctic ecosystems to changes in ice shelf basal melt rates. 
    more » « less